Modelling thrombosis using dissipative particle dynamics method.
نویسندگان
چکیده
AIM Arterial occlusion is a leading cause of cardiovascular disease. The main mechanism causing vessel occlusion is thrombus formation, which may be initiated by the activation of platelets. The focus of this study is on the mechanical aspects of platelet-mediated thrombosis which includes the motion, collision, adhesion and aggregation of activated platelets in the blood. A review of the existing continuum-based models is given. A mechanical model of platelet accumulation onto the vessel wall is developed using the dissipative particle dynamics (DPD) method in which the blood (i.e. colloidal-composed medium) is treated as a group of mesoscale particles interacting through conservative, dissipative, attractive and random forces. METHODS Colloidal fluid components (plasma and platelets) are discretized by mesoscopic (micrometre-size) particles that move according to Newton's law. The size of each mesoscopic particle is small enough to allow tracking of each constituent of the colloidal fluid, but significantly larger than the size of atoms such that, in contrast to the molecular dynamics approach, detailed atomic level analysis is not required. RESULTS To test this model, we simulated the deposition of platelets onto the wall of an expanded tube and compared our computed results with the experimental data of Karino et al. (Miscrovasc. Res. 17, 238-269, 1977). By matching our simulations to the experimental results, the platelet aggregation/adhesion binding force (characterized by an effective spring constant) was determined and found to be within a physiologically reasonable range. CONCLUSION Our results suggest that the DPD method offers a promising new approach to the modelling of platelet-mediated thrombosis. The DPD model includes interaction forces between platelets both when they are in the resting state (non-activated) and when they are activated, and therefore it can be extended to the analysis of kinetics of binding and other phenomena relevant to thrombosis.
منابع مشابه
Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale
The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...
متن کاملSimulation of tetraetherlipids on solid surfaces – an extension of the DPD-model
Recently we developed a new mesoscopic molecular modelling computer simulation method from the Dissipative Particle Dynamics (DPD) method [2] useful for simulations of specific dynamical processes at the microsecond and micrometer scale. This unique technique, called Molecular-Fragment-Dynamics (MFD), can be generally applied to surfactants, polymers, nanoparticles and complex mixtures in mater...
متن کاملMFD-simulation of surface coatings – an extension to solid/fluid molecular modelling models
Molecular Fragment Dynamics (MFD) is a new method for mesoscopic molecular modelling computer simulations derived from Dissipative Particle Dynamics (DPD) [1]. It can be used to simulate dynamical processes at a microsecond timescale and up to micrometer scales and can handle up to 1.500.000 particles. This unique technique so far has been successfully applied to surfactants, adjuvants, polymer...
متن کاملبررسی دینامیکی ذرات خارج شده از هسته برانگیخته با استفاده از روش لانژوین
Using Langevin dynamics and the dissipative nature of the fission process, we have studied dynamical variations of nucleus from the formation of the compound nucleus to separation stage of two fission fragments. During this dissipative process, particles such as neutron, proton, alpha particle and gamma ray emit from the compound system. In the present work, the number of emitted particles usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 366 1879 شماره
صفحات -
تاریخ انتشار 2008